Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Control of confined vortex breakdown with partial rotating lids

Identifieur interne : 004229 ( Main/Exploration ); précédent : 004228; suivant : 004230

Control of confined vortex breakdown with partial rotating lids

Auteurs : L. Mununga [Australie] ; D. Lo Jacono [Australie] ; J. N. S Rensen [Danemark] ; T. Leweke [France] ; M. C. Thompson [Australie] ; K. Hourigan [Australie]

Source :

RBID : Pascal:14-0054765

Descripteurs français

English descriptors

Abstract

Experiments were conducted to determine the effectiveness of controlling vortex breakdown in a confined cylindrical vessel using a small rotating disk, which was flush-mounted into the opposite endwall to the rotating endwall driving the primary recirculating flow. The results show that the control disk, with relatively little power input, can modify the azimuthal and axial flow significantly, changing the entire flow structure in the cylinder. Co-rotation was found to precipitate vortex breakdown onset whereas counter-rotation delays it. Furthermore, for the Reynolds-number range over which breakdown normally exists, co-rotation increases the bubble radial and axial dimensions, while shifting the bubble in the upstream direction. By contrast, counter-rotation tends to reduce the size of the bubble, or completely suppress it, while shifting the bubble in the downstream direction. These effects are amplified substantially by the use of larger control disks and higher rotation ratios. A series of numerical simulations close to the onset Reynolds number reveals that the control disk acts to generate a rotation-rate-invariant local positive or negative azimuthal vorticity source away from the immediate vicinity of the control disk but upstream of breakdown. Advection of this source along streamlines modifies the strength of the azimuthal vorticity ring, which effectively controls whether the flow reverses on the axis, and thus, in turn, whether vortex breakdown occurs. The vorticity source generated by the control disk scales approximately linearly with rotation ratio and cubically with disk diameter; this allows the observed variation of the critical Reynolds number to be approximately predicted.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Control of confined vortex breakdown with partial rotating lids</title>
<author>
<name sortKey="Mununga, L" sort="Mununga, L" uniqKey="Mununga L" first="L." last="Mununga">L. Mununga</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lo Jacono, D" sort="Lo Jacono, D" uniqKey="Lo Jacono D" first="D." last="Lo Jacono">D. Lo Jacono</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="S Rensen, J N" sort="S Rensen, J N" uniqKey="S Rensen J" first="J. N." last="S Rensen">J. N. S Rensen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Technical University of Denmark</s1>
<s2>Lyngby, 2800</s2>
<s3>DNK</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>Lyngby, 2800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut de Recherche sur les Phénomènes Hors Équilibre (IRPHÉ), UMR 6594 CNRS / Universités Aix-Marseille I & II, 49 rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>13384 Marseille</wicri:noRegion>
<placeName>
<settlement type="city">Marseille</settlement>
<region type="région" nuts="2">Provence-Alpes-Côte d'Azur</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0054765</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0054765 INIST</idno>
<idno type="RBID">Pascal:14-0054765</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000549</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005909</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000375</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000375</idno>
<idno type="wicri:doubleKey">0022-1120:2014:Mununga L:control:of:confined</idno>
<idno type="wicri:Area/Main/Merge">004299</idno>
<idno type="wicri:Area/Main/Curation">004229</idno>
<idno type="wicri:Area/Main/Exploration">004229</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Control of confined vortex breakdown with partial rotating lids</title>
<author>
<name sortKey="Mununga, L" sort="Mununga, L" uniqKey="Mununga L" first="L." last="Mununga">L. Mununga</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lo Jacono, D" sort="Lo Jacono, D" uniqKey="Lo Jacono D" first="D." last="Lo Jacono">D. Lo Jacono</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="S Rensen, J N" sort="S Rensen, J N" uniqKey="S Rensen J" first="J. N." last="S Rensen">J. N. S Rensen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Mechanical Engineering, Technical University of Denmark</s1>
<s2>Lyngby, 2800</s2>
<s3>DNK</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Danemark</country>
<wicri:noRegion>Lyngby, 2800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institut de Recherche sur les Phénomènes Hors Équilibre (IRPHÉ), UMR 6594 CNRS / Universités Aix-Marseille I & II, 49 rue Frédéric Joliot-Curie, B.P. 146</s1>
<s2>13384 Marseille</s2>
<s3>FRA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>France</country>
<wicri:noRegion>13384 Marseille</wicri:noRegion>
<placeName>
<settlement type="city">Marseille</settlement>
<region type="région" nuts="2">Provence-Alpes-Côte d'Azur</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Division of Biological Engineering, Monash University</s1>
<s2>Melbourne, Victoria 3800</s2>
<s3>AUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Melbourne, Victoria 3800</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of Fluid Mechanics</title>
<title level="j" type="abbreviated">J. Fluid Mech.</title>
<idno type="ISSN">0022-1120</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Experimental study</term>
<term>Flow control</term>
<term>Flow visualization</term>
<term>Vortex breakdown</term>
<term>Vortex flow</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Eclatement tourbillonnaire</term>
<term>Ecoulement tourbillonnaire</term>
<term>Commande écoulement</term>
<term>Etude expérimentale</term>
<term>Visualisation écoulement</term>
<term>4762</term>
<term>4732C</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Experiments were conducted to determine the effectiveness of controlling vortex breakdown in a confined cylindrical vessel using a small rotating disk, which was flush-mounted into the opposite endwall to the rotating endwall driving the primary recirculating flow. The results show that the control disk, with relatively little power input, can modify the azimuthal and axial flow significantly, changing the entire flow structure in the cylinder. Co-rotation was found to precipitate vortex breakdown onset whereas counter-rotation delays it. Furthermore, for the Reynolds-number range over which breakdown normally exists, co-rotation increases the bubble radial and axial dimensions, while shifting the bubble in the upstream direction. By contrast, counter-rotation tends to reduce the size of the bubble, or completely suppress it, while shifting the bubble in the downstream direction. These effects are amplified substantially by the use of larger control disks and higher rotation ratios. A series of numerical simulations close to the onset Reynolds number reveals that the control disk acts to generate a rotation-rate-invariant local positive or negative azimuthal vorticity source away from the immediate vicinity of the control disk but upstream of breakdown. Advection of this source along streamlines modifies the strength of the azimuthal vorticity ring, which effectively controls whether the flow reverses on the axis, and thus, in turn, whether vortex breakdown occurs. The vorticity source generated by the control disk scales approximately linearly with rotation ratio and cubically with disk diameter; this allows the observed variation of the critical Reynolds number to be approximately predicted.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Danemark</li>
<li>France</li>
</country>
<region>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Marseille</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Mununga, L" sort="Mununga, L" uniqKey="Mununga L" first="L." last="Mununga">L. Mununga</name>
</noRegion>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<name sortKey="Hourigan, K" sort="Hourigan, K" uniqKey="Hourigan K" first="K." last="Hourigan">K. Hourigan</name>
<name sortKey="Lo Jacono, D" sort="Lo Jacono, D" uniqKey="Lo Jacono D" first="D." last="Lo Jacono">D. Lo Jacono</name>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
<name sortKey="Thompson, M C" sort="Thompson, M C" uniqKey="Thompson M" first="M. C." last="Thompson">M. C. Thompson</name>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="S Rensen, J N" sort="S Rensen, J N" uniqKey="S Rensen J" first="J. N." last="S Rensen">J. N. S Rensen</name>
</noRegion>
</country>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Leweke, T" sort="Leweke, T" uniqKey="Leweke T" first="T." last="Leweke">T. Leweke</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004229 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004229 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:14-0054765
   |texte=   Control of confined vortex breakdown with partial rotating lids
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024